翻訳と辞書
Words near each other
・ Hamiltonhill
・ Hamiltonhill Branch
・ Hamiltonian
・ Hamiltonian (control theory)
・ Hamiltonian (quantum mechanics)
・ Hamiltonian coloring
・ Hamiltonian completion
・ Hamiltonian constraint
・ Hamiltonian constraint of LQG
・ Hamiltonian economic program
・ Hamiltonian field theory
・ Hamiltonian fluid mechanics
・ Hamiltonian lattice gauge theory
・ Hamiltonian matrix
・ Hamiltonian mechanics
Hamiltonian optics
・ Hamiltonian path
・ Hamiltonian path problem
・ Hamiltonian spite
・ Hamiltonian system
・ Hamiltonian vector field
・ Hamiltonsbawn
・ Hamiltonstövare
・ Hamilton–Brantford–Cambridge Trails
・ Hamilton–Jacobi equation
・ Hamilton–Jacobi–Bellman equation
・ Hamilton–Jacobi–Einstein equation
・ Hamilton–Norwood scale
・ Hamilton–Reynolds sex scandal
・ Hamilton–Scourge survey expedition


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hamiltonian optics : ウィキペディア英語版
Hamiltonian optics
Lagrangian optics〔Vasudevan Lakshminarayanan et al., ''Lagrangian Optics'', Springer Netherlands, 2011 (978-0792375821 )〕 and Hamiltonian optics〔H. A. Buchdahl, ''An Introduction to Hamiltonian Optics'', Dover Publications, 1993 (978-0486675978 )〕 are two formulations of geometrical optics which share much of the mathematical formalism with Lagrangian mechanics and Hamiltonian mechanics.
==Hamilton's principle==

(詳細はphysics, Hamilton's principle states that the evolution of a system \left(q_1\left(\sigma\right),\cdots,q_N\left(\sigma\right)\right) described by N generalized coordinates between two specified states at two specified parameters ''σ''''A'' and ''σ''''B'' is a stationary point (a point where the variation is zero), of the action functional, or
:\delta S= \delta\int_} L\left(q_1,\cdots,q_N,\dot_1,\cdots,\dot_N,\sigma\right)\, d\sigma=0
where \dot_k=dq_k/d\sigma. Condition \delta S=0 \ is valid if and only if the Euler-Lagrange equations are satisfied
:
\frac -
\frac\frac = 0

with k=1,\cdots,N.
The momentum is defined as
: p_k=\frac
and the Euler-Lagrange equations can then be rewritten as
:
\dot p_k = \frac

where \dot_k=dp_k/d\sigma.
A different approach to solving this problem consists in defining a Hamiltonian (taking a Legendre transform of the Lagrangian) as
:H = \sum_k p_k - L
for which a new set of differential equations can be derived by looking at how the total differential of the Lagrangian depends on parameter ''σ'', positions q_i\, and their derivatives \dot q_i relative to ''σ''. This derivation is the same as in Hamiltonian mechanics, only with time ''t'' now replaced by a general parameter ''σ''. Those differential equations are the Hamilton's equations
:\frac =- \dot_k \,, \quad \frac = \dot_k \,, \quad \frac = - \,.
with k=1,\cdots,N. Hamilton's equations are first-order differential equations, while Euler-Lagrange's equations are second-order.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hamiltonian optics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.